CONVERSION Information Chart Calculations and Flow Meter Sizing (SCFM Applications)

Compressibility of Gases

Since gases are significantly compressible, their density varies with pressure and temperature. Table 1 & 2 of the Conversion Chart shown in Figure 3 is used to convert "indicated" scfm flow rates to "actual" scfm flow rates for your application.

Effects of Specific Gravity

Standard scales are calibrated for air with a specific gravity of 1.0. Table 3 of the Conversion Chart shown in Figure 3 is used to calculate "actual" scfm flow rates of gases with a specific gravity other than 1.0.

Example: Measuring Natural Gas with Air Meter.

Operating Parameters

Fluid ~ Natural Gas Line Pressure ~ 140 psig Temperature ~ 40°F Desired Maximum Flow ~ 85 scfm Pressure Drop ~ 10 psid maximum Port Size ~ 1/2 inch NPTF desired

1. Pressure correction for 140 psi

$$f_1 = \sqrt{\frac{114.7}{14.7 + 140}} = \sqrt{\frac{114.7}{154.7}} = .861$$

2. Temperature correction for 40°F

$$f_2 = \sqrt{\frac{460 + 40}{530}} = \sqrt{\frac{500}{530}} = .971$$

DE	DETERMINE FLOW RATES USING DIFFERENT PRESSURES & TEMPERATURES												
scfm	n (actua) = <u> </u>	cfm (inc f ₁ χ f ₂	licated) X f ₃	Whe	$ \begin{array}{ll} \mbox{Where} & f_1 = \mbox{Conversion factor for inlet pressure} \\ f_2 = \mbox{Conversion factor for temperature} \\ f_3 = \mbox{Conversion factor for specific gravity} \end{array} $							
	TABLE 1 PRESSURE CORRECTION FACTOR (f1) Operating Pressure												
psig	25	50	75	100	125	150	175	200	225	250			
BAR	1.7	3.5	5.2	6.9	8.6	10.4	12.1	13.8	15.5	17.2			
kPa	172	345	517	689	862	1034	1207	1379	1551	1724			
f ₁	1.700	1.331	1.131	1.00	.902	.835	.778	.731	.692	.658			
$f_{1} = \sqrt{\frac{114.7}{14.7 + \text{psig}}} \qquad f_{1} = \sqrt{\frac{7.914}{1.014 + \text{BAR}}} \qquad f_{1} = \sqrt{\frac{790.857}{101.357 + \text{kPa}}}$ TABLE 2 TEMPERATURE CORRECTION FACTOR (f ₂)													
°F	+10	+30	+50	+70	+90	+110	+130	+150	+170	+190			
°C	-12.2	-1.1	+9.9	+21.0	+32.1	+43	+54	+65	+76	+88			
f ₂	.942	.962	.981	1.00	1.018	1.037	1.055	1.072	1.090	1.107			
$f_2 = \sqrt{\frac{460 + {}^{\circ}F}{530}} \qquad f_2 = \sqrt{\frac{273 + {}^{\circ}C}{293}}$													
TABLE 3 SPECIFIC GRAVITY CORRECTION FACTOR (f3)													
	$f_3 = \sqrt{Sp. Gr.}$												

Figure 3. Conversion Chart

Viton® is a registered trademark of DuPont Dow Elastomers

RELIABLE FLOW MEASUREMENT

3. Specific gravity correction for natural gas, s.g. = 0.60

$$f_3 = \sqrt{.60} = .775$$

4. Make total correction calculation, f total

 $f_{total} = f_1 x f_2 x f_3 = .861 x .971 x .775 = .648$

5. To determine actual flow vs. indicated flow: read indicated flow at 100 psi vertical line on the multipressure scale (see Figure 1) and apply correction factor.

scfm (actual) = $\frac{55 \text{ scfm (indicated)}}{.648 (f_{\text{total}})} = 84.9$

6. 10 psid maximum See page 56 for pressure drop (ΔP) to find the appropriate size/flow range to meet the 10 psid requirements.

7. To determine which standard Hedland meter is required to achieve desired maximum flow of 85 scfm.

85 scfm (max flow) x .648 (f_{total}) = 55.1 scfm

8. From the example – model H671A-100 or H771A-100 can be selected. Both meet the 55.1 scfm flow requirement and operate with less than 10 psid. The actual scale range can be calculated as follows:

10 scfm (standard) \div .648 (f total) = 15.4 scfm (actual) 100 scfm (standard) \div .648 (f total) = 154.3 scfm (actual)

Fluid Selection Chart

	Internal Body Material				External Press. Seals		Dust Guard				
Fluid	Specific Gravity	Correction Factor of Standard Scale	Aluminum	Brass	T316 SST	T303 SST	Viton®	EPR	Polycarbonate	Nylon	Pyrex TM
Air	1.0	1.000	R	R	R	R	R	R	R	R	R
Argon (A)	1.38	1.175	R	R	R	R	R	R	R	R	R
Carbon Dioxide (CO ₂)	1.53	1.237	R	R	R	R	R	R	R	R	R
Freon 11 (CCI ₃ F)	4 <u>.</u> 92	2.218	R	R	R	R	R	R	R	R	R
Freon 12 (CCl ₂ F)	4.26	2.060	R	R	R	R	R	R	R	R	R
Helium (HE)	0.14	0.374	R	R	R	R	R	R	R	R	R
Hydrogen (H ₂)	0.07	0.265	R	R	R	R	R	R	R	R	R
Natural Gas	0.60	0.775	С	С	R	С	R	Ν	С	R	R
Nitrogen (N ₂)	0.97	0.985	С	С	R	R	R	R	С	R	R
Oxygen (O ₂)	1.10	1.049	R	R	R	R	R	R	R	R	R
Propane (C ₃ H ₈)	1.57	1.253	R	R	R	R	R	Ν	Ν	R	R
R - Recommended N - Not Recommended C - Consult Factory											

Figure 4. Specific Gravity and Correction Factor for Common Gases

